Alternating groups as products of cycle classes

نویسندگان

چکیده

Given integers $k,l\geq 2$, where either $l$ is odd or $k$ even, let $n(k,l)$ denote the largest integer $n$ such that each element of $A_n$ a product many $l$-cycles. In 2008, M. Herzog, G. Kaplan and A. Lev proved if $k,l$ both are odd, $3\mid l$ $l>3$, then $n(k,l)=\frac{2}{3}kl$. They further conjectured even l$, $n(k,l)=\frac{2}{3}kl+1$. this article, we prove conjecture. We also $n(k,3)=2k+1$ odd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Classes in Alternating Groups

We present a method, based on an old idea of Serre, for completely computing Frobenius classes in alternating groups. We contrast this method with other approaches in examples involving the alternating groups A3 and A9. The method can be useful for proper subgroups of alternating groups as well, and we present examples involving the 168-element group PSL2(7) = GL3(2) and the Mathieu group M24.

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

Powers of Cycle-Classes in Symmetric Groups

dedicated to the memory of paul erdo s, who inspired so many with so much

متن کامل

computing the products of conjugacy classes for specific finite groups

suppose $g$ is a finite group, $a$ and $b$ are conjugacy classes of $g$ and $eta(ab)$ denotes the number of conjugacy classes contained in $ab$. the set of all $eta(ab)$ such that $a, b$ run over conjugacy classes of $g$ is denoted by $eta(g)$.the aim of this paper is to compute $eta(g)$, $g in { d_{2n}, t_{4n}, u_{6n}, v_{8n}, sd_{8n}}$ or $g$ is a decomposable group of order $2pq$, a group of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2023

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2023.113470